Guía de recomendaciones para el diseño y cálculo de fijaciones para sistemas de impermeabilización de cubiertas planas

Esta publicación se ha creado con el objetivo de proporcionar a los técnicos de obra un conjunto de recomendaciones para el adecuado diseño y cálculo de fijaciones en cubiertas planas. Pretende ser un documento de ayuda para los instaladores, contratistas, direcciones facultativas de obra, etc. de manera que puedan trabajar ofreciendo los mejores niveles de seguridad y calidad. La guía recoge la tipología de fijaciones existente, la normativa de aplicación en sistemas de impermeabilización fijados mecánicamente y dos anexos relativos a ensayos y cálculos.

Publicación- Octubre 2022

Guía de recomendaciones para el diseño y cálculo de fijaciones para sistemas de impermeabilización de cubiertas planas

Guía de recomendaciones para el diseño y cálculo de fijaciones para sistemas de impermeabilización de cubiertas planas

Otras publicaciones

Material de Cambio de Fase (PCM), Inercia térmica 100 veces más eficiente
  • 9 sep. 2016

  • 24982

Material de Cambio de Fase (PCM), Inercia térmica 100 veces más eficiente

Materiales y sistemas constructivos La abreviatura que se utiliza para estos materiales, PCM, proviene de sus siglas en inglés (Phase Change Materials). Son materiales con la capacidad de almacenar energía mediante su cambio de estado, en forma de calor latente. Dentro de las muchas aplicaciones industriales que tienen este tipo de materiales, me interesa destacar su capacidad para aumentar significativamente la inercia térmica en los edificios, reduciendo considerablemente el peso y espesor de los muros.   La importancia de la inercia térmica La inercia térmica juega un papel muy importante a la hora de alcanzar y mantener las condiciones de confort en un edificio. Las edificaciones con una gran inercia térmica mantienen la temperatura interior más estable. Funciona mediante el intercambio energético con el ambiente, como un gran almacén de energía, evitando los picos de temperatura y generando así situaciones de mayor confort. Ésta propiedad depende de la masa, del calor específico de los materiales y del coeficiente de conductividad térmica. Principios físicos de los PCM Para entender los principios físicos de los PCM es necesario comprender las siguientes formas de almacenar energía térmica: Calor sensible: Cantidad de calor que absorbe o libera un cuerpo sin que en el ocurran cambios en su estado físico (cambio de fase), aumentando o disminuyendo su temperatura. Calor latente: La energía que recibe el material se ocupa de realizar el cambio de estado pero no cambia su temperatura. Mientras ocurre este fenómeno de “cambio de fase” la temperatura del cuerpo permanece constante. Un ejemplo muy común es lo que ocurre con el agua. El hielo se funde a 0ªC, y hasta que no se haya fundido completamente la temperatura no varía. Una vez fundido, si seguimos aplicando calor la temperatura incrementa hasta alcanzar los 100ºC, donde comenzará a evaporarse. La temperatura se mantendrá a 100ºC hasta que toda el agua se haya convertido en vapor. Si seguimos calentando lo que conseguiremos es que el vapor aumente de temperatura. El comportamiento del agua se corresponde con el siguiente gráfico: La principal ventaja de los PCM es que almacenan grandes cantidades de energía a la temperatura de confort (21-23ºC) a través de su cambio de estado, en forma de calor latente. Como se observa en la siguiente tabla, el calor que almacenan los PCM en el rango de temperaturas de confort es más de 100 veces superior al que almacenarían los materiales más comunes en edificación.   Aplicaciones en la edificación (como inercia térmica) Estos materiales trabajan intercambiando energía con el ambiente. Este intercambio se produce principalmente por superficie, aunque en determinados casos se fuerza este intercambio de energía ventilándolos. Por lo tanto la situación óptima serán las mayores superficies libres de una vivienda, como pueden ser los techos y las paredes o en cámaras bajo el suelo incorporando sistemas de ventilación. Por otro lado, si lo que se desea es mezclar los PCM con otro material, la mejor opción son las parafinas microencapsuladas, consideradas actualmente como el PCM óptimo para este tipo de aplicaciones. Bien por su carencia de reactividad con otros materiales, bien por su capacidad de mezclarse como si de un árido se tratase. No debemos olvidar que estos PCM tienen un alto coste y sus posibles problemas a la hora de separarlos del material y reciclarlos.   Tipos de PCM para edificación Sales hidratadas: bajo coste y capacidad de almacenamiento de grandes cantidades de calor por unidad de volumen, en comparación con las sustancias orgánicas. Pero a causa de sus problemas de súper-enfriamiento, segregación en el cambio de fase y corrosión se comenzó a investigar otro tipo de materiales, las parafinas. Parafinas: Estos materiales presentaban una menor capacidad de almacenamiento y eran más costosos, sin embargo son más resistentes a la corrosión y mucho más estables. Además, se puede controlar la temperatura a la que se desea que cambien de fase, lo que les confiere un mejor comportamiento térmico. Han sido muchos los usos que se le han dado a estos materiales, pero es una capacidad en concreto la que merece ser destacada: la microencapsulación. Parafinas microencapsuladas: El objetivo principal de la microencapsulación es la impermeabilidad que se le aporta a las parafinas. Esta propiedad consigue que el material no reaccione con otros elementos, se proteja de ser tóxico o nocivo, que no sea volátil y sobre todo que el cambio de estado se produzca en el interior de la propia microcápsula. Mediante esta propiedad se han llevado a cabo investigaciones para determinar cómo se pueden combinar estos materiales con otros convencionales de construcción. Generalmente estas microcápsulas son polímeros (acrílicos) de color blanco, que dentro albergan las parafinas, que son una especie de ceras. Se distribuyen en un polvo seco y tienen un tamaño de entre 0,1 y 0,6 mm. Angel Sánchez Inocencio Colegiado COAATIE Albacete        

Guías Técnicas de Madera en Construcción
  • 16 dic. 2015

  • 7837

Guías Técnicas de Madera en Construcción

Materiales y sistemas constructivos A continuación te presentamos las Guías Técnicas de Madera en Construcción, que ASEMAD ha elaborado en colaboración con el Instituto Tecnológico de la Madera y Mueble (AIDIMA). Estas guías técnicas representan, una documentación única para arquitectos, ingenieros, diseñadores, interioristas y todos los técnicos especialistas que realizan su ejercicio profesional entorno al hábitat, ya que van a disponer de un soporte técnico excelente sobre las nuevas aplicaciones, soluciones y normativas técnicas que integra la madera y sus productos derivados en el ámbito de la construcción y el hábitat. Esta colección está compuesta por 4 monografías: Puertas de madera Ventanas de madera Revestimientos de interior y exterior de madera Suelos y Pavimentos de madera Están concebidas como un compendio del conocimiento científico-técnico actual. Se presentan con una estructura clara y sencilla, que permite al usuario obtener una visión global de los aspectos técnicos que se necesitan, y de cómo solucionar los principales problemas entorno al uso de la madera en construcción que se pueden encontrar en los diferentes proyectos. Ver en la fuente original.